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1.	Utilizing	constituent	moments	to	produce	high-resolution	concentrations	

	

Second-order	moments	(first	and	second	derivatives)	have	long	been	used	for	advection	

of	both	physical	“parameters”	such	as	heat	and	transported	constituents	(sometimes	

referred	to	as	‘tracers’)	in	our	model	[27].	We	have	now	implemented	a	mechanism	to	

take	advantage	of	those	moments	to	create	constituent	fields	at	higher	resolution	than	

the	model’s	basic	grid	box	resolution.	We	incorporate	high-resolution	emissions	

information,	using	that	to	alter	not	only	the	grid	box	tracer	mass	but	also	the	horizontal	

tracer	moments	(x,	y,	xx,	yy,	and	xy).	Those	moments	are	then	used	in	the	dynamics,	as	

they	have	been	for	decades,	and	diagnostics	are	expanded	to	output	those	five	moments	

along	with	the	standard	output	of	constituent	mass.	Those	six	quantities	are	then	used	to	

redistribute	constituents	within	the	large	model	grid	box	while	preserving	the	total,	

arriving	at	a	higher-resolution	distribution	of	surface	pollutants.	For	sulfate,	we	

incorporate	the	SO2	moments	within	the	chemical	production	of	SO4	as	this	pathway	is	

fairly	straightforward.	Other	chemistry	involves	multiple	pathways	and	so	does	not	

incorporate	sub-grid	scale	information.	

	

To	illustrate	the	effect	of	this	new	technique,	we	show	surface	PM2.5	concentrations	over	

East	Asia,	a	region	with	very	high	PM2.5	levels	(Figure	S1).	There	is	a	clear	redistribution	

of	pollution	with	the	incorporation	of	constituent	moments.	This	is	particularly	obvious	

near	coasts	where	emissions	gradients	can	be	extremely	large.	For	example,	the	native	2	

x	2.5	degree	simulation	shows	elevated	PM2.5	throughout	a	large	grid	box	at	the	

northwest	corner	of	South	Korea,	more	than	half	of	which	extends	out	over	the	ocean.	
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Incorporating	moments	within	emissions,	sulfur	chemistry	and	post-processing	

redistributes	the	concentration	to	be	far	higher	over	the	land	area	within	this	box,	which	

includes	the	cities	of	Seoul	and	Incheon.	A	similar	redistribution	is	visible	at	the	Yangtze	

River	delta	where	Shanghai	is	located.	Moving	inland,	urban	centers	can	be	discerned	

more	readily	with	the	use	of	moments,	for	example	Xian	in	the	northwest	of	China.	The	

maximum	values	obtained	in	polluted	areas	are	increased	as	well,	such	as	in	Hong	

Kong/Guangzhou,	Shanghai	and	Tokyo.	

	

Comparison	with	observations	shows	improvement,	in	particular	reducing	the	overall	

low	bias	seen	in	comparisons	with	urban	measurements.	For	example,	for	the	61	urban	

centers	among	the	top	103	in	Table	1	(those	with	>100,000	premature	deaths	

prevented,	hence	the	most	important	for	our	results)	for	which	directly	measured	PM2.5	

observations	(i.e.	rather	inferred	from	PM10	measurements)	were	available	in	the	2016	

World	Health	Organization’s	database	of	ambient	air	pollution	(data	spanning	2009-

2014)	[34],	the	typical	low	bias	of	a	coarse	grid	global	model	is	greatly	reduced	with	the	

use	of	moments	(Figure	S2).	Specifically,	in	those	61	cities	the	mean	bias	in	the	base	case	

is	-9.3	μg	m-3	(17%)	whereas	in	the	case	with	moments	the	bias	is	reduced	to	-3.8	μg	m-3	

(7%).	Clearly	the	model	remains	imperfect	(Figure	S2),	but	at	the	same	time	it	is	

substantially	improved	for	the	purpose	of	metropolitan	area	air	quality	modeling.	We	

note	that	the	model	did	exhibit	substantial	low	biases	in	surface	PM2.5	over	South	Asia	

(India,	Pakistan	and	especially	Bangladesh).	As	the	model	exhibits	its	most	pronounced	

precipitation	biases	by	far	of	those	seen	over	any	land	areas	in	this	region	[24],	we	

expect	that	the	bias	is	largely	attributable	to	the	model’s	failure	to	accurately	reproduce	

the	Asian	Monsoon.	Since	this	would	affect	large	areas	(not	only	urban	centers),	a	bias	

adjustment	was	applied	to	all	values	in	those	three	countries.	Impacts	of	this	bias	

adjustment	are	within	the	uncertainty	in	the	exposure-response	function,	however.		

	

Across	the	61	cities	evaluated	here,	the	mean	absolute	bias	in	the	model	was	30%	

relative	to	observations	(after	bias	adjustment).	It	would	certainly	be	valuable	to	explore	

the	results	from	regional	modeling	that	might	better	capture	urban-area	PM2.5,	in	

particular	for	cities	in	South	Asia.	However,	as	the	uncertainty	of	the	cumulative	deaths	
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based	on	the	exposure-response	function	is	44%,	values	in	most	areas	would	likely	

remain	within	the	ranges	given	here.	Note	also	that	a	recent	analysis	using	similar	

exposure-response	relationships	and	a	satellite-based	analysis	of	surface	PM2.5	found	

that	the	global	2010	impact	was	~3.9	million	premature	deaths,	a	value	consistent	with	

our	3.6±0.9	million	from	PM2.5	(including	thresholds,	as	in	the	other	study)	[33].	

	

	

Figure	S1.	Native	2	x	2.5	degree	horizontal	resolution	simulation	of	present-day	(2010)	

surface	PM2.5	(μg	m-3)	over	East	Asia,	and	the	0.5	x	0.5	degree	results	incorporating	first-	

and	second-order	horizontal	moments	in	emissions,	sulfur	chemistry,	and	post-

simulation	concentration	reconstructions.	0.5	x	0.5	degree	boxes	with	more	than	5	

million	inhabitants	are	marked	with	a	white	X.	
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Figure	S2.	Urban	annual	average	PM2.5	observations	versus	model	results	for	the	grid	

box	containing	the	observed	location	using	the	model’s	native	2	x	2.5	degree	resolution	

(left	column)	and	the	0.5	x	0.5	degree	results	incorporating	first-	and	second-order	

horizontal	moments	in	emissions,	sulfur	chemistry,	and	post-simulation	concentration	

reconstructions	(right	column).	Data	is	shown	for	the	61	of	103	cities	with	value	

>100,000	in	Table	1/S1	for	which	data	is	reported	from	direct	PM2.5	observations.	

	

	 	

Urban PM2.5
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2.	Calculation	of	monetized	near-term,	long-term,	local	and	remote	impacts	

	

In	order	to	better	understand	the	relative	importance	to	society	of	environmental	

damages	attributable	to	climate	and	air	quality	over	various	spatial	and	temporal	scales,	

we	evaluated	the	social	costs	of	all	atmospheric	emissions	from	various	sources	based	

on	prior	work	that	developed	the	Social	Cost	of	Atmospheric	Release	[11],	now	

separating	these	into	near-term,	long-term,	remote	and	national	damages.	Here	we	

define	near-term	as	the	fraction	of	damages	that	occur	during	the	first	10	years,	whereas	

long	term	is	everything	occurring	after	10	years.	Local	damages	are	defined	as	the	

national	portions	of	surface	land	area	for	a	large	nation	such	as	the	US	or	China	or	a	

block	of	smaller	nations	such	as	the	EU	(~6%	of	the	world’s	surface	area)	for	impacts	

related	to	climate	and	agriculture	and	for	methane’s	effect	on	health	via	ozone.	Remote	

is	defined	as	the	remainder,	except	for	composition-health	impacts	for	which	90%	of	

PM-related	health	impacts	are	considered	local	and	the	rest	remote	(based	on	[35]).		

	

We	find	that	the	bulk	of	damages	attributable	to	current	emissions	from	US	coal-fired	

power	plants	are	near-term	and	local:	58%	with	a	3%	economic	discount	rate	(range	of	

51	to	72%	with	1.4%	and	5%	discounting,	respectively).	With	their	greater	emissions	of	

traditional	air	pollutants,	the	values	are	higher	for	Chinese	coal-fired	power	plants:	64,	

69	and	78%	for	1.4,	3	and	5%	discount	rates,	respectively,	a	pattern	likely	repeated	in	

most	developing	countries.	For	US	surface	transportation,	which	is	more	highly	co-

located	with	population	than	power	plants,	the	share	of	damages	that	are	local	and	near-

term	is	68%	with	a	3%	discount	rate	(range	62-77%).	Though	valuation	of	climate-

related	benefits	would	greatly	increase	over	time,	this	suggests	that	near-term	societal	

benefits	of	many	sectoral	transformations	within	a	rapid	low	carbon	transition	would	

likely	be	dominated	by	human	health	gains	that	are	themselves	overwhelmingly	

attributable	to	air	quality	(more	than	99%	of	the	near-term,	national	effects	stem	from	

air	quality-health	impacts).	These	results	motivate	this	study	to	probe	deeper	into	the	

near-term,	national	effects,	with	a	focus	on	air	quality,	in	examination	of	the	impacts	of	

the	various	scenarios,	and	in	particular	to	highlight	the	effects	on	individual	
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metropolitan	areas	as	research	indicates	that	highlighting	risks	for	specific	localities	

more	effectively	communicates	the	damaging	effects	of	climate	change	[36,	37].	

	

Note	that	some	other	sectors	show	a	much	smaller	share	of	benefits	occurring	locally	

and	in	the	near-term.	For	example,	many	of	the	damages	associated	with	use	of	natural	

gas	come	from	fugitive	methane	emissions	and	so	are	near-term	(~30%),	but	only	a	

small	portion	are	localized	to	the	nation	where	emissions	take	place	(~5%	of	total	

damages	for	the	US).		

	

Figure	S3.	Share	of	total	valuation	of	environmental	impacts	of	2010	emissions	from	

coal-fired	power	plants	in	the	US	and	China	and	in	US	gasoline-powered	surface	

transportation.	

	

	 	

Coal-fired Electricity: US
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3.	Ozone	Evaluation	and	Bias	Correction	

	

We	compared	model	output	with	observed	mean	annual	daily	8-hr	maximum	

concentrations	for	83	urban	areas	in	the	US	and	China	using	hourly	data	from	the	U.S.	

EPA’s	Air	Quality	System	and	from	the	Beijing	Municipal	Environmental/China	National	

Environmental	Monitoring	Centers	(http://beijingair.sinaapp.com).	Unlike	PM2.5,	for	

which	the	systematic	bias	is	weakly	negative	(Figure	S2),	the	GISS-E2	model	tends	to	

overpredict	urban	surface	ozone	levels,	as	do	most	models.	Surprisingly,	biases	in	the	US	

and	China	are	nearly	identical,	suggesting	that	this	evaluation	is	likely	broadly	

applicable.	Reducing	mean	annual	daily	8-hr	maximum	ozone	concentrations	by	25%	

eliminates	the	bias,	and	so	as	a	conservative	approach	we	reduced	ozone	worldwide	by	

this	factor	(adjusting	based	on	the	ppb	bias	would	lead	to	smaller	changes	in	more	

heavily	polluted	areas,	while	no	adjustment	would	lead	to	overestimated	impacts).	

	

The	bias	adjustment	of	ozone	reduces	the	integrated	21st	century	impacts	by	19	and	

39%	when	thresholds	are	not	and	are	used,	respectively	(see	SI.4	for	additional	

discussion	of	thresholds).	Thus	the	influence	of	the	ozone	bias	correction	is	comparable	

in	magnitude	to	the	30%	uncertainty	in	ozone	impacts	stemming	from	the	exposure-

response	relationship	(the	relative	risk	values)	and	26%	stemming	from	the	choice	of	

whether	or	not	to	use	a	low	exposure	threshold	(leading	to	a	combined	methodological	

uncertainty	of	39%).	Hence	improved	ozone	modeling	could	lead	to	improvements	in	

health	impact	estimates	(though	given	the	dominance	of	PM-related	impacts,	ozone	bias	

corrections	remain	a	relatively	minor	source	of	total	uncertainty).	We	point	out	that	the	

use	of	a	threshold	makes	the	results	much	more	sensitive	to	model	biases,	as	small	

changes	can	lead	to	large	impacts	as	values	cross	the	threshold,	so	that	uncertainties	are	

larger	when	thresholds	are	used	(as	is	the	case	for	PM	impacts;	see	SI.4).	Our	bias	for	all	

available	areas	is	6%	less,	indicating	that	urban	areas	are	slightly	more	biased	than	

rural,	presumably	due	to	titration	at	high	levels	of	nitrogen	oxides	that	is	not	fully	

resolved	by	the	model	(and	hence	our	bias	adjustment	based	on	urban	data	will	lead	to	

underestimated	non-urban	impacts,	but	these	should	similarly	not	be	markedly	so).	
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4.	Alternative	Calculations	of	Ozone-Health	Impacts	and	Use	of	Low	Exposure	Thresholds	

for	Ozone	and	PM2.5	

	

For	comparison	with	prior	studies,	we	not	only	calculated	ozone-related	health	impacts	

using	the	most	recent	relative	risk	functions,	but	also	including	two	older	relative	risk	

functions.	The	first	comes	from	an	American	Cancer	Society	US	study	associating	long-

term	ozone	exposure	with	premature	death	from	respiratory	disease	[38]	(an	earlier,	

smaller	sample	from	the	same	study	used	in	the	newer	analyses	[29]).	This	RR	has	a	

value	of	1.04	per	10	ppb	increase	in	the	maximum	6-month	average	of	the	1-hr	daily	

ozone	maximum	[18].	The	second	relative	risk	function	is	based	on	short-term	exposure	

[39],	and	assigns	most	impacts	to	increased	cardiovascular	disease	using	a	RR	of	1.11	for	

a	10	ppb	increase	in	24-hr	ozone	concentrations	based	on	a	meta-analysis	[40].	We	

reported	the	mean	of	these	two	methods	with	uncertainties	representing	the	range	

between	these	two	results	as	our	‘legacy’	calculation	when	comparing	with	prior	

analyses	that	relied	upon	similar	relative	risk	functions	in	the	Methods	section.	As	these	

older	methods	included	much	weaker	exposure-response	functions,	unsurprisingly	they	

yielded	markedly	smaller	impacts	of	the	accelerated	emissions	cuts	even	though	we	did	

not	include	exposure	thresholds	(but	did	incorporate	ozone	bias-adjustment).	

Cumulative	avoided	premature	deaths	due	to	ozone	were	17±4	million	using	legacy	

methods,	less	than	half	the	36±10	million	found	using	the	updated	exposure-response	

functions	for	respiratory	causes	only	including	an	exposure	threshold	or	41±9	million	

without	a	threshold.	

	

We	note	that	the	updated	exposure-response	functions	were	obtained	from	an	extended	

analysis	of	the	same	underlying	dataset	used	in	the	prior	‘legacy’	exposure-response	

functions	[38],	and	this	larger	dataset	(covering	more	subjects	over	longer	times)	was	

analyzed	by	many	of	the	same	authors	as	the	earlier	work.	Although	it	has	not	yet	been	

widely	used	in	health	studies,	it	therefore	seems	sensible	that	it	should	supersede	the	

prior	methods.	One	recent	study	does	utilize	these	newer	exposure-response	functions,	

and	finds	an	even	larger	increase	in	the	premature	deaths	associated	with	ozone	[41],	
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though	they	analyze	respiratory-related	deaths	only.	As	reported	in	the	Methods	section,	

that	study	utilized	a	different	model’s	ozone	and	did	not	discuss	comparison	with	

observations	or	bias	adjustment.	Hence	our	smaller	values	for	respiratory	impacts	

appear	related	to	our	use	of	bias-adjusted	modeled	ozone.	Ozone-related	premature	

deaths	are	attributable	to	respiratory	diseases	and	circulatory	(cardiovascular	diseases	

plus	diabetes)	in	the	newer	analysis,	and	in	our	study	the	cumulative	impacts	of	these	

are	36±10	and	24±15	million,	respectively	(including	the	exposure	threshold).	Hence	

respiratory	impacts	are	likely	the	largest,	and	uncertainties	associated	with	those	are	

substantially	smaller	than	those	for	circulatory	diseases.	We	note	that	the	circulatory	

responses	were	robust	in	the	large	recent	analysis	[29],	and	recent	work	has	shown	

plausible	biological	mechanisms	by	which	ozone	can	contribute	to	cardiovascular	

disease	[42],	hence	we	include	these	outcomes	even	though	they	have	not	yet	been	

widely	accepted	(e.g.	by	the	WHO).		

	

The	results	are	sensitive	to	assumptions	about	impacts	at	low	ozone	levels,	especially	

below	the	lowest	level	at	which	exposures	took	place	in	the	epidemiological	studies	

which	are	commonly	used	as	lower	thresholds.	As	shown	in	the	main	text	(Figure	2),	

under	the	accelerated	reductions	scenario	ozone	values	in	most	of	the	world	drop	below	

the	26.7	ppb	threshold	by	2080,	resulting	in	a	decrease	to	near-zero	ozone-related	

deaths	in	the	last	decades	of	the	century	when	an	exposure	threshold	is	used.	

	

Most	literature	follows	the	conservative	judgment	of	the	health	research	community	to	

only	include	results	at	exposures	that	have	been	observed,	meaning	using	a	low	

exposure	threshold.	It	is	improbable,	however,	that	the	effects	of	air	pollution	abruptly	

vanish	below	measured	levels,	and	indeed	biological	models	do	not	make	a	convincing	

case	for	‘safe’	exposure	levels.	Hence	incorporating	the	measured	exposure-response	

curves	all	the	way	to	zero	might	make	more	sense	despite	the	lack	of	observations	at	

very	low	exposures.	In	support	of	this	approach,	a	recent	study	[43]	with	a	very	large	

sample	size	(>60	million	persons)	has	demonstrated	that	at	the	lower	end	of	observed	

exposures,	all	cause	premature	death	associated	with	an	incremental	ozone	increase	was	

only	marginally	weaker	and	statistically	indistinguishable	from	that	at	higher	exposures,	
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(as	the	analysis	in	[29]	found	statistically	indistinguishable	results	with	and	without	a	

threshold).	In	that	same	study	[43],	for	PM2.5	all-cause	mortalities	the	relative	risk	for	an	

incremental	change	in	exposure	actually	increased	substantially	at	lower	exposures,	

undermining	the	rationale	for	including	a	so-called	‘counterfactual’	low	exposure	

threshold.		

	

For	this	reason	we	also	included	impact	calculations	for	PM2.5	and	ozone	that	did	not	

include	an	exposure	threshold.	As	discussed	in	the	main	text,	the	use	of	a	threshold	leads	

to	much	lower	total	values	but	has	much	less	effect	on	the	impact	of	the	accelerated	

emissions	reductions.	When	thresholds	are	used	for	PM2.5	exposure,	the	impacts	of	the	

accelerated	emissions	reductions	begin	to	shrink	rapidly	towards	the	late	21st	century,	

however,	due	to	many	areas	falling	below	the	threshold	whereas	in	the	calculations	

without	a	threshold	the	impacts	vary	smoothly	through	time	and	remain	fairly	constant	

from	2050	through	2100	(Figure	2).	We	point	out	also	that	the	relative	uncertainty	

associated	with	the	PM2.5	impacts	is	substantially	less	in	the	case	without	an	exposure	

threshold.	This	is	because	the	1000	variants	of	the	exposure-response	function	produce	

a	wider	range	of	outcomes	in	the	case	with	the	threshold	as	the	simulated	values	fall	

below	the	threshold	in	some	variants	but	not	in	others,	creating	large	divergences.	Such	

behavior	does	not	occur	when	thresholds	are	not	used.	Worldwide	cumulative	deaths	

attributable	to	PM2.5	are	well	within	the	uncertainty	range	of	the	threshold-based	values	

when	no	threshold	is	used,	however.	

	

For	ozone,	the	impacts	of	the	accelerated	emissions	reductions	similarly	begin	to	shrink	

rapidly	towards	the	late	21st	century	when	a	threshold	is	used	due	to	many	areas	falling	

below	that	value	(Figure	2).	Relative	difference	between	worldwide	cumulative	global	

deaths	averted	by	the	accelerated	emissions	reductions	are	greater	for	ozone	than	PM2.5,	

but	the	cases	with	and	without	a	threshold	again	have	overlapping	uncertainty	ranges.	

As	discussed	in	SI.3,	uncertainties	associated	with	model	biases	are	larger	for	ozone-

related	deaths	when	using	a	threshold	than	in	the	no-threshold	case.	Based	on	the	

epidemiological	evidence	against	‘safe’	low-level	exposures	along	with	the	absence	of	

artificial	changes	in	impacts	when	projected	values	cross	thresholds	(see	also	Figure	S5)	
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and	the	reduced	uncertainties	and	sensitivities	to	model	biases	in	the	absence	of	

thresholds,	we	favor	the	results	without	exposure	thresholds	but	present	both	for	

consistency	with	the	general	practice	of	incorporating	exposure	thresholds.	We	note	that	

when	no	thresholds	are	used,	it	may	be	useful	to	compare	impacts	with	those	

attributable	to	preindustrial	air	pollutant	concentrations	rather	than	zero	to	reveal	the	

approximate	‘anthropogenic	portion’	(see	Figure	2	caption).	Such	a	comparison	has	

ambiguities,	however,	as	owing	to	large	estimates	for	preindustrial	biomass	burning	

[44],	values	relative	to	preindustrial	can	be	lower	than	values	estimated	with	

conventional	thresholds	in	the	case	of	PM2.5.	

	

Although	global	values	are	only	modestly	sensitive	to	this	methodological	choice,	

metropolitan	area	deaths	can	be	very	sensitive	to	the	choice	of	whether	a	threshold	is	

used,	and	the	relative	magnitude	of	results	in	the	two	cases	varies	markedly	across	

regions	(Table	1/S1	versus	Table	S2).	Cities	with	high	current	pollution	levels	tend	to	

experience	greater	benefits	from	emissions	reductions	when	a	threshold	is	used	as	their	

pollution	can	drop	below	the	threshold	in	the	future	and	eliminate	all	impacts,	whereas	

cities	with	low	pollution	levels	tend	to	see	greater	benefits	without	a	threshold	as	those	

results	account	for	incremental	improvements	at	lower	exposures.	Hence	premature	

deaths	in	many	developing	country	metropolitan	areas	decrease	when	the	threshold	is	

removed	(e.g.	totals	in	Delhi	decrease	by	18%),	but	metropolitan	area	values	in	many	

developed	countries	increase,	sometimes	greatly	(e.g.	totals	in	New	York	nearly	triple).	

	

Note	also	that	the	exposure-response	analysis	found	suggestive	evidence	for	a	

counterfactual	for	ozone-health	impacts	of	35	ppb	below	which	health	impacts	are	

defined	to	be	zero,	and	also	reported	a	higher	RR	based	on	all	the	ozone	exposures	above	

that	level	(RR	1.17;	95%	CI	1.11-1.22)	for	respiratory-related	deaths	[29].	Using	this	

higher	ozone	threshold,	2010	all-cause	premature	deaths	attributable	to	ozone	decrease	

to	0.6±0.2	million	as	the	exclusion	of	locations	with	O3<35	ppb	has	a	larger	impact	than	

the	increased	risk	value.	

	

We	point	out	that	although	we	have	used	a	global	model	and	hence	presumably	provide	
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less	accurate	information	at	the	metropolitan	scale	than	regional	or	local	models	might	

achieve,	the	mean	absolute	ozone	bias	in	our	model	across	both	US	and	Chinese	urban	

sites	is	14%,	which	is	substantially	smaller	than	the	uncertainties	associated	with	the	

best	case	exposure-response	function	(26%)	or	those	related	to	assumptions	about	the	

exposure-response	relationship	(e.g.	the	metropolitan	area	differences	discussed	above).	

Nonetheless,	for	detailed	planning	purposes	in	metropolitan	areas	both	higher	

resolution	atmospheric	modeling	and	more	detailed	modeling	of	local	energy	and	

economy	options	would	be	appropriate.	

	

As	noted	in	the	tables,	uncertainties	in	metropolitan	areas	are	relatively	larger	than	

those	for	global	totals	as	they	include	uncertainties	in	modeling	local	pollutant	

concentrations	based	on	mean	absolute	biases.	For	global	totals,	we	include	the	mean	

bias	in	modeled	PM2.5	of	7%	along	with	the	exposure-response	uncertainty	(though	the	

latter	is	much	larger).	For	ozone,	the	bias	adjustment	uses	all	available	data,	so	by	

definition	the	mean	bias	is	zero,	hence	it	is	unclear	what	bias	one	would	use.	The	mean	

absolute	bias	is	14%,	but	some	places	are	overestimated	whereas	others	are	

underestimated	and	so	how	model	biases	might	affect	the	global	total	is	not	clear	but	

should	be	less	than	this	value	and	thus	small	compared	to	the	exposure-response	

uncertainty.	Overall,	both	exposure	biases	appear	to	be	much	smaller	than	the	exposure-

response	uncertainties,	as	in	prior	studies	(e.g.	[18]).	
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5.	Implications	of	the	Experimental	Design	regarding	Feasibility	and	Assessment	of	Health	

Impacts	

	

Although	we	discussed	economic	implications	of	the	air	quality	changes	modeled	here,	

this	study	is	neither	a	cost/benefit	analysis	nor	a	cost-optimization	exercise,	but	is	

instead	intended	to	be	complementary	to	IAM	cost-optimization	analyses	by	addressing	

a	benefit	that	is	not	valued	in	the	type	of	IAM	that	produces	scenarios	such	as	the	RCPs.	

In	scenario	generation	exercises,	the	framework	is	often	that	a	goal	is	decided,	e.g.	as	

when	the	Parties	to	the	UNFCCC	set	a	temperature	(and	hence	implicit	radiative	forcing)	

goal,	and	then	IAMs	are	used	to	find	the	least	cost	path	to	reach	that	target	based	only	on	

mitigation	costs.	In	such	a	case,	deployment	of	negative	emissions	may	be	projected	to	

be	less	expensive	than	eliminating	many	of	the	most	expensive	fossil	fuel	uses	(the	

residual	in	the	IAM	scenarios),	but	that	is	based	on	evaluating	mitigation	costs	alone	and	

not	evaluating	benefits,	in	part	because	by	design	the	climate	impact	of	alternative	

pathways	that	lead	to	the	same	climate	outcome	have	the	same	climate	benefits	and	non-

climate	impacts	are	generally	not	considered.	Given	the	large	air	quality	impacts	of	these	

choices,	however,	our	study	demonstrates	that	the	wider	societal	impacts	may	be	

markedly	different,	and	hence	merit	consideration	alongside	mitigation	costs	in	

decision-making	about	policy	options.	

	

It	is	also	worth	noting	that	while	maximum	phase	out	rates	of	fossil	fuel	usage	in	the	

IAMs	are	in	part	based	on	historical	evidence	for	the	maximum	achievable	rate	of	

technological	change,	in	fact	real–world	developments	can	outpace	those	projected	in	

expert	models.	For	example,	a	recent	study	showed	that	the	actual	rate	of	increase	in	

installed	solar	electricity	generation	capacity	outpaced	each	of	the	last	four	projections	

of	the	International	Energy	Agency	despite	those	projections	being	increased	with	each	

successive	revision	[45].	Hence	the	transition	away	from	fossil	fuels	might	in	fact	be	

faster	than	envisioned	in	IAMs.	In	addition,	IAMs	tend	to	have	limited	representation	of	

some	land-management	options	(e.g.	biochar	or	peatlands)	and	some	demand-side	

mitigation	options	(e.g.	changes	in	diet	or	food	wastage,	urban	planning)	[46].	Hence	the	
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low	carbon	scenario	of	the	RCP2.6	is	but	an	illustrative	example.	Greater	reductions	in	

fossil	fuel	usage	were	not	produced	in	the	IAM	generating	RCP2.6	as	they	were	assumed	

to	be	more	expensive	than	BECCS.	However,	either	more	rapid	declines	in	the	cost	of	

renewables	or	in	energy	demand	could	substantially	alter	such	estimates.	Hence	the	

economic	feasibility,	which	would	depend	upon	both	costs	and	benefits	in	real-world	

choices	(though	not	in	IAM	cost-effective	frameworks	that	do	not	include	benefits),	of	

the	scenarios	examined	here	is	difficult	to	determine.	A	full	assessment	of	‘feasibility’	is	

beyond	the	scope	of	this	study	and	would	require	simulation	with	an	IAM	along	with	a	

necessarily	subjective	evaluation	of	the	various	aspects	of	feasibility	including	technical,	

political,	economic	and	societal	feasibility.	

	

Our	rates	and	magnitude	of	emissions	reductions	vary	across	pollutant,	but	are	very	

large	for	several	pollutants	and	in	particular	SO2	and	CO2	(Figure	S4).	We	note	that	as	

SO2	is	only	one	precursor	to	PM2.5,	and	ozone	is	also	an	important	contributor	to	human	

health	impacts,	emissions	of	SO2	are	not	necessarily	a	good	indicator	of	overall	health	

impacts	of	air	pollution.	In	our	scenarios	in	fact,	SO2	emissions	would	be	a	relatively	poor	

indicator	of	health	impacts	associated	with	ambient	air	pollution,	which	follow	carbon	

monoxide	(or	even	nitrogen	oxides)	more	closely,	especially	when	removing	population	

growth	(Figure	S5).	This	is	likely	because	CO	is	itself	an	ozone	precursor	and	is	also	often	

co-emitted	with	carbonaceous	aerosol	precursors	(likewise	NOx	is	a	precursor	of	both	

ozone	and	aerosol).	Hence	utilizing	SO2	emissions	as	an	indicator	of	air	quality	in	future	

scenarios	[13,	14]	may	not	be	advisable	since	ozone	becomes	the	dominant	driver	of	

premature	deaths	by	2030	(Figure	2).	

	

This	study	examines	the	health	impacts	of	changes	in	outdoor	air	quality	only.	We	note	

also	that	the	accelerated	reductions	in	residential	sector	emissions	would	bring	

additional	health	benefits	related	to	indoor	air	quality	beyond	those	analyzed	here	

(though	the	RCP2.6	scenario	assumed	that	people	would	move	up	the	‘energy	ladder’	

with	projected	growth	in	per	capita	incomes,	leading	to	the	rapid	elimination	of	

residential	use	of	solid	biofuels	so	that	additional	benefits	would	likely	be	small).	There	

would	also	be	health	benefits	if	part	of	the	transition	to	low-carbon	urban	transport	
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takes	place	via	increased	‘active	transport’	(walking	and	biking)	[47,	48],	though	

quantification	would	require	analysis	of	projected	transportation	types	beyond	the	

scope	of	the	scenarios	explored	here.	As	mentioned	previously,	in	the	comparisons	

between	1.5	and	2	degree	warming	scenarios,	there	would	also	be	additional	health	

benefits	associated	with	reduced	climate	change	(e.g.	[16]).	

	

Figure	S4.	Emissions	of	major	pollutants	in	the	scenarios	used	here.	Net	CO2	emissions	

(upper	left)	are	shown	for	the	2°C,	1.5°C	and	RCP2.6	scenarios	whereas	RCP2.6/2°C	and	

NoNegRCP2.6/1.5°C	are	shown	for	all	others	(as	the	only	difference	between	RCP2.6	and	

the	2°C	scenarios	is	for	CO2	based	on	additional	carbon	uptake	via	land	management).	
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Figure	S5.	Total	global	annual	premature	deaths	(all-cause)	due	to	both	PM2.5	and	ozone	

exposure	(including	low	exposure	thresholds)	under	the	scenarios	with	standard	

emissions	of	non-CO2	pollutants	(RCP2.6	and	2°C)	and	under	the	scenarios	with	

accelerated	CO2	emissions	reductions	(NoNegRCP2.6	and	1.5°C)	expressed	as	totals	

(top)	and	per	100,000	people	(all	population	for	PM2.5,	>30	years	of	age	for	ozone)	

(bottom).	
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6.	Radiative	Forcing	over	Time	due	to	Accelerated	Emissions	Cuts	

	

We	show	timeseries	of	radiative	forcing	calculated	with	the	GISS-E2	model	for	aerosols	

and	ozone	and	with	offline	radiative	forcing	calculations	following	standard	IPCC	

methodology	for	methane	and	CO2	(Figure	S6).	Note	that	aerosol	forcing	is	positive	

owing	to	reductions	in	cooling	aerosols	(sulfate,	nitrate	and	organic	carbon)	that	

outweigh	reductions	in	warming	components	(black	carbon).	From	2070	onwards,	the	

net	non-CO2	forcing	is	almost	exactly	equal	to	the	aerosol	indirect	forcing	as	the	positive	

aerosol	direct	forcing	along	with	positive	methane	forcing	are	cancelled	out	by	negative	

ozone	forcing.		

	

	

Figure	S6.	Radiative	forcing	relative	to	2010	for	the	indicated	components	in	the	

NoNegRCP2.6	relative	to	the	RCP2.6	scenario.	
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Supplementary	Tables	
	
	
Table	S1.	As	Table	1	but	for	metropolitan	areas	with	greater	than	1.5	million	population	

for	which	there	are	between	350,000	and	4,000	avoided	premature	deaths	due	to	

accelerated	emissions	reductions.	Values	from	calculations	including	low	exposure	

thresholds.	

Metropolitan Area 
Avoided 

premature deaths 
Shuyang 350,000 
Jinan 340,000 
Yokohama 330,000 
Bhopal 330,000 
Moscow 320,000 
Zibo 300,000 
Nanjing 300,000 
Mexico City 290,000 
Tianjin 290,000 
Surabaya 280,000 
Bangkok 260,000 
Accra 250,000 
Seoul 250,000 
Kano 250,000 
Nanchong 230,000 
Chengdu 230,000 
Changsha 220,000 
Hefei 210,000 
Xiangtan 210,000 
Chongqing 200,000 
Sao Paulo 200,000 
Wenzhou 190,000 
Addis Ababa 180,000 
Shenyeng 180,000 
Xian 170,000 
Osaka 170,000 
Luoyang 170,000 
Abidjan 170,000 
Sanaa 170,000 
Qingdao 160,000 
Kyoto 160,000 
Baghdad 150,000 
Taipei 130,000 

Los Angeles 130,000 
Zhangzhou 130,000 
Shijianzhuang 130,000 
Xiamen 130,000 
Puebla 130,000 
Luzhou 130,000 
Tashkent 120,000 
Tangshan 120,000 
New York 120,000 
Tehran 120,000 
Nanchang 120,000 
Luanda 110,000 
Taichung 110,000 
Nagoya 110,000 
Douala 110,000 
Kabul 93,000 
Fuzhou 93,000 
Tel Aviv-Yafo 93,000 
Pyongyang 89,000 
Singapore 75,000 
Guiyang 73,000 
Harbin 71,000 
Changchun 71,000 
Wanxian 68,000 
Benoni 67,000 
Johannesburg 67,000 
Hechi 65,000 
Taiyuan 60,000 
Rangoon 59,000 
Baku 59,000 
Daegu 55,000 
London 53,000 
Istanbul 53,000 
Dalian 49,000 
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Fukuoka 48,000 
Kaohsiung 47,000 
Busan 47,000 
Rio de Janeiro 43,000 
Haikou 42,000 
Alexandria 41,000 
Kunming 41,000 
Bucharest 40,000 
Medan 40,000 
San Francisco 37,000 
Lanzhou 36,000 
Paris 35,000 
Jilin 34,000 
Algiers 34,000 
Beirut 32,000 
Damascus 29,000 
Campinas 28,000 
Hiroshima 26,000 
Katowice 25,000 
Santiago 25,000 
San Diego 24,000 
Washington D.C. 23,000 
Palembang 23,000 
Casablanca 23,000 
Rabat 21,000 
Philadelphia 20,000 
Naples 19,000 
Athens 19,000 
Buenos Aires 18,000 
Tunis 16,000 
Birmingham 16,000 
Barcelona 16,000 
Madrid 15,000 
Rome 15,000 
Chicago 15,000 
Urumqi 14,000 
Milan 14,000 
Boston 14,000 

Stuttgart 14,000 
Isfahan 13,000 
Aleppo 13,000 
Cali 13,000 
Sapporo 12,000 
Izmir 12,000 
Lisbon 12,000 
Sendai 12,000 
Ankara 11,000 
Frankfurt 11,000 
Toronto 11,000 
Mashhad 10,000 
Kiev 9,000 
Miami 9,000 
Detroit 8,000 
Dakar 8,000 
Seattle 8,000 
Budapest 8,000 
Denver 8,000 
Nairobi 7,000 
Durban 7,000 
Dar es Salaam 7,000 
Havana 6,000 
Lima 6,000 
Atlanta 6,000 
Hamburg 6,000 
Warsaw 6,000 
St. Petersburg 5,000 
Phoenix 5,000 
Vienna 4,000 
Pittsburgh 4,000 
Berlin 4,000 
Montreal 4,000 
Jeddah 4,000 
George Town 4,000 
Khartoum 4,000 
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Table	S2.	As	Table	1	but	providing	values	from	calculations	without	low	exposure	

thresholds	for	metropolitan	areas	with	at	least	40,000	avoided	premature	deaths.	

Metropolitan Area 
Avoided 

premature deaths 
Kolkata 3,600,000 
Delhi 3,300,000 
Dhaka 3,200,000 
Patna 2,700,000 
Lahore 2,200,000 
Mumbai 1,800,000 
Faisalabad 1,700,000 
Lucknow 1,600,000 
Agra 1,500,000 
Ibadan 1,400,000 
Dongguan 1,400,000 
Jakarta 1,400,000 
Kanpur 1,300,000 
Guangzhou 1,200,000 
Lagos 1,100,000 
Bandung 1,000,000 
Shenzhen 990,000 
Cairo 800,000 
Pune 790,000 
Ahmedabad 780,000 
Shanghai 750,000 
Ludhiana 750,000 
Vadodara 740,000 
Hong Kong 740,000 
Manila 710,000 
Hyderabad 660,000 
Kano 650,000 
Hanoi 640,000 
Rawalpindi 640,000 
Chittagong 620,000 
Karachi 620,000 
Saidu 550,000 
Zhengzhou 540,000 
Nagpur 530,000 
Chennai 520,000 
Moscow 510,000 
Wuhan 480,000 
Surat 480,000 

Xuzhou 460,000 
Suzhou 460,000 
Jaipur 450,000 
Bangalore 440,000 
Ho Chi Minh City 440,000 
Kinshasa 440,000 
Beijing 440,000 
Indore 420,000 
Taian 410,000 
Hangzhou 410,000 
Sao Paulo 400,000 
Chengdu 390,000 
Tokyo 380,000 
Surabaya 380,000 
Shuyang 370,000 
Mexico City 360,000 
Nanjing 360,000 
Jinan 350,000 
Yokohama 340,000 
Chongqing 340,000 
New York 340,000 
Bangkok 330,000 
Changsha 330,000 
Nanchong 320,000 
Xiangtan 320,000 
Addis Ababa 320,000 
Zibo 320,000 
Bhopal 320,000 
Tianjin 310,000 
Los Angeles 300,000 
Baghdad 290,000 
Hefei 260,000 
Seoul 250,000 
Wenzhou 250,000 
Xian 250,000 
Luoyang 230,000 
Sanaa 220,000 
Luzhou 220,000 
Shenyeng 220,000 
London 210,000 
Zhangzhou 210,000 
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Accra 200,000 
Xiamen 200,000 
Nanchang 200,000 
Shijianzhuang 190,000 
Osaka 190,000 
Qingdao 180,000 
Taipei 170,000 
Rangoon 170,000 
Abidjan 170,000 
Tehran 170,000 
Fuzhou 170,000 
Kyoto 170,000 
Puebla 160,000 
Dar es Salaam 160,000 
Rio de Janeiro 160,000 
Kabul 150,000 
Tangshan 150,000 
Benoni 150,000 
Johannesburg 150,000 
Taichung 150,000 
Guiyang 150,000 
Nairobi 150,000 
Buenos Aires 150,000 
Istanbul 140,000 
Khartoum 140,000 
Pyongyang 140,000 
Omdurman 140,000 
Wanxian 140,000 
Hechi 140,000 
Tel Aviv-Yafo 130,000 
Tashkent 130,000 
Campinas 120,000 
Medan 120,000 
Paris 120,000 
San Francisco 120,000 
Nagoya 110,000 
Chicago 110,000 
Singapore 100,000 
Birmingham 100,000 
Washington D.C. 100,000 
Taiyuan 100,000 
Kunming 100,000 
Changchun 95,000 
Philadelphia 95,000 

Luanda 88,000 
Haikou 88,000 
Antananarivo 88,000 
Douala 87,000 
Kiev 87,000 
Alexandria 86,000 
Harbin 86,000 
Dakar 84,000 
Kaohsiung 82,000 
Boston 82,000 
San Diego 77,000 
Dalian 68,000 
Katowice 67,000 
Toronto 66,000 
Baku 65,000 
Bucharest 65,000 
Milan 65,000 
Detroit 64,000 
Daegu 64,000 
Algiers 61,000 
Santiago 60,000 
Lanzhou 60,000 
Fukuoka 59,000 
Port-au-Prince 58,000 
Dallas 55,000 
Houston 55,000 
Beirut 53,000 
Stuttgart 53,000 
Busan 53,000 
Atlanta 53,000 
Frankfurt 52,000 
Bogota 51,000 
Jilin 51,000 
Madrid 50,000 
Damascus 49,000 
Miami 48,000 
Casablanca 48,000 
Durban 46,000 
Budapest 45,000 
Rabat 43,000 
Lima 41,000 
Barcelona 41,000 
Naples 41,000 
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